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This paper presents a generalization of the classical results of T. B. Benjamin (J. Fluid.
Mech. vol. 31, 1968, p. 209) concerning the propagation of a steady gravity current into
a homogeneous ambient, to the case of a stratified ambient. The current of thickness
h and density ρc propagates, with speed U , at the bottom of a long horizontal channel
of height H , into the unperturbed ambient whose density increases linearly from ρo

(at the top) to ρb (at the bottom). The reduced gravity is g′ = (ρc/ρo − 1)g and the
governing parameters are a = h/H and S = (ρb − ρo)/(ρc − ρo), with 0 < a < 1, 0 <

S < 1; here g is the acceleration due to gravity. For a Boussinesq high-Reynolds
two-dimensional configuration, a flow-field solution of Long’s model, combined with
flow-force balance over the width of the channel, are used for obtaining the desired
results, in particular: Fr = U/(g′h)1/2, head loss (dissipation), and criticality of U with
respect to the fastest internal wave mode. The classical results of Benjamin are fully
recovered for S → 0. For small S and fixed a, the values of Fr and head loss are shown
to decrease with S like (1 − 2S/3)1/2 and (1 − 2S/3), respectively, and the propagation
is supercritical. For larger S several solutions are possible (for a given geometry a),
mostly in the subcritical regime. Considerations for the physical acceptability of the
multiple results are presented, and the connection with observations from lock-release
experiments are discussed. The conclusion is that the present results provide a reliable
and versatile generalization of the classical unstratified problem.

1. Introduction
Benjamin’s (1968) theory on the steady-state propagation of a gravity current into a

homogeneous ambient is well known and almost automatically cited in all subsequent
works on gravity currents. The prototype geometry is a long horizontal channel of
height H filled with stationary ambient fluid of density ρo. Into this fluid, at the
bottom of the channel, a layer (current) of denser fluid of density ρc and thickness h

propagates with uniform velocity U . The driving force is the reduced gravity

g′ = ε g, (1.1)

where g is the acceleration due to gravity and

ε =
ρc − ρo

ρo

. (1.2)

Another important dimensionless parameter is the fractional depth

a = h/H. (1.3)
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The natural scaling velocity is (g′h)1/2. The pertinent scaled velocity of propagation,
referred to as the Froude number of the current, is

Û = Fr =
U

(g′h)1/2
. (1.4)

Benjamin derived rigorously an explicit formula for the Froude number as a
function of a, namely

FrB(a) =

[
(2 − a)(1 − a)

1 + a

]1/2

(1.5)

(the subscript B is used to denote the classic Benjamin results).
Moreover, Benjamin proved that head loss occurs, in general, in the steady-state

gravity current configuration. He showed that along each streamline in the ambient,
the pressure drop below the ideal energy-conserving Bernoulli result, scaled with ρog

′,
is given by

∆B = h
a(1 − 2a)

2(1 − a2)
(1.6)

(this result is independent of the height of the streamline). Consequently, the ideal
energy-conserving case is restricted to a = 0.5 only, and the steady state is physically
possible only for a current which occupies a fractional depth a � amax =0.5 (for a
larger a the dissipation would be negative).

The key role played by this theory in the investigation of non-stratified problems
provides strong academic and practical motivations for the development of the
counterpart theory for the linearly stratified ambient. Indeed, the stratification of
the ambient is a natural ingredient in practical gravity current systems. However,
this problem has defied solution for four decades. No such theory, or at least a
systematic extension to mild stratification effects, has been published, to the best of
our knowledge. Some ad hoc Fr approximations for intrusions into a linearly stratified
ambient were used by Kao (1976) and Manins (1976). Ungarish & Huppert (2002), on
the basis of localized pressure-head consideration, developed a practical stratification
adjustment factor to the non-stratified Fr. This formula was used as an essential
ingredient of a predictive shallow-water (SW) model. The SW results agree well with
experiments and numerical Navier–Stokes solutions (in particular of Maxworthy et
al. 2002 ) in a wide range of S and a. This indicates that the suggested formula
captures the main features well (at least in the lock-release context). However, this
formula lacks a rigorous theoretical backing. More details will be presented in § 3.5.

This work attempts to present the linear stratified ambient counterpart of
Benjamin’s Froude-formula results. The configuration is sketched in figure 1. The den-
sity of the unperturbed ambient, on the right-hand side, increases linearly from ρo

at the top to ρb at the bottom; the density of the current is, again, ρc (we consider
ρc � ρb cases). A new dimensional parameter enters the formulation, the relative
magnitude of the stratification

S =
ρb − ρo

ρc − ρo

, (1.7)

with 0 < S < 1. Now Fr is a function of both a and S. We expect that the classical case
is recovered in the limit of a very mild stratification, S → 0. We assume an almost
inviscid Boussinesq fluid (i.e. Re = Uh/ν � 1 and ε � 1, where ν is the kinematic
viscosity of the fluid) and a shallow configuration in the sense that the typical
horizontal length is large compared with h.
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Figure 1. Sketch of the configuration. The lower boundary of the ambient is z = χ(x). r and
l denote the upstream (right-hand) and the downstream (left-hand) positions.

The idea is to explore the similarity between the flow configuration used by
Benjamin and a result of Long’s model (Long 1953, 1955; Baines 1995) concerning
the flow of a stratified fluid in a channel with an upper horizontal solid wall and a
prescribed bottom topography. We use a frame of reference attached to the gravity
current. As in Benjamin’s case, the far upstream velocity of the ambient is constant
over the height of the channel, 0 � z � H . This flow climbs the topography (current)
at a relatively slow pace (compared with the horizontal propagation). The streamlines
become horizontal again in the far downstream region of the thinner channel,
h � z � H . For an observer moving with the current (the bottom topography), the flow
is steady. Total force, stability and dissipation considerations are applied to determine
the velocity of a physically valid steady flow – in other words, the acceptable values
of Û =Fr for a given geometry and stratification. In Benjamin’s case, the analysis is
facilitated by the fact that the downstream flow of the ambient fluid regains a uni-
form velocity, UH/(H − h). However, in the present case, owing to the linear density
stratification in the upstream region, the horizontal downstream flow field of the am-
bient fluid develops a complex z-dependent structure of both the velocity and density.
This difference introduces, besides quantitative changes in Fr, novel qualitative
features.

The organization of the paper is as follows. In § 2, we formulate the flow field and
derive the governing flow-force balance equation. In § 3, we present and analyse the
results, in particular concerning the values of Fr and dissipation. Special attention is
focused on the small S limit, i.e. small deviations from the classical Benjamin confi-
guration. Comparisons with the experimental–numerical results of Maxworthy et al.
(2002) and with previously suggested Fr formulae are also discussed. In § 4, some
concluding remarks are given.

2. Formulation
2.1. Steady-state flow pattern

We start our analysis with a solution of a two-dimensional stratified flow field over
a rigid bottom topography in a channel with an upper horizontal rigid lid at z = H ,
see figure 1. The horizontal and vertical coordinates are {x, z}, and the corresponding
velocity components are {u, w}. Gravity acts in the −z-direction. To be specific, the
obstacle (or topography) encountered by the unperturbed stratified fluid is defined
by the bottom elevation function, z = χ(x). The value of χ is 0 (i.e. no obstacle) for
non-positive x. For x > 0, the wall is elevated to χ(x) > 0, and far downstream at
the left-hand side, a parallel geometry is achieved again with χ(x) = h = const > 0.

The far upstream flow (at the right-hand side, x → −∞), where the bottom is flat,
z = χ(x) = 0, consists of parallel horizontal streamlines with constant velocity U and
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a prescribed stable linearly changing density. Using the subscript r (right) to denote
this region, and employing the hydrostatic balance, we write

ur (z) = U ; wr (z) = 0; ρr (z) = ρb − (ρb − ρo)
z

H
;

pr (z) = −g

∫ z

0

ρr (z
′) dz′ (0 � z � H ),


 (2.1)

where p is the pressure.
Under the assumption of a two-dimensional steady Boussinesq, inviscid and hydro-

static flow, Long’s model procedure can be applied to reduce the set of governing
Navier–Stokes equations to a single partial-differential equation for the displacement
of the streamline, δ(x, z), with proper boundary conditions, in particular, δ = 0 in the
upstream right-hand region, and δ = χ(x) at the bottom. The exact solution for the
present configuration is reported in Baines (1995, § 5.7.1). The flow field is conveniently
expressed with the aid of the perturbation (about the upstream flow) stream function,
−∂ψ/∂z = u′, ∂ψ/∂x = w, where u =U + u′. The result reads

ψ(x, z) = Uχ(x)
sin[β(1 − z/H )]

sin[β(1 − χ(x)/H )]
= Uδ(x, z) (2.2)

and

ρ(x, z) = ρb + (ρb − ρo)

[
− z

H
+

χ(x)

H

sin[β(1 − z/H )]

sin[β(1 − χ(x)/H )]

]
, (2.3)

where

β =
[(ρb/ρo − 1)gH ]1/2

U
=

(Sg′H )1/2

U
=

NH

U
(2.4)

and N = [(ρb/ρo − 1)g/H ]1/2 = (Sg′/H )1/2 is the buoyancy frequency.
We combine this result with the presumed steady-state bottom gravity current. We

replace the solid bottom obstacle with a stationary fluid of density ρc in the domain
(x � 0, 0 � z � χ(x)). The {x, z}-system is now a frame of reference attached to the
gravity current, and the origin O is the front stagnation point. Following the lines of
Benjamin’s analysis, it is assumed that the dissipation effects in the resulting two-fluid
system are relatively small (as confirmed below in § 3.4) and hence the structure of
the parallel horizontal far up- and down-stream flow regions of the ambient, given by
(2.2)–(2.3), is preserved. In this system, the right-hand upstream flow, where χ(x) = 0,
is unchanged and given by (2.1). In the left-hand (subscript l) region, where χ(x) = h,
the parallel horizontal flow satisfies

ul(z) =




0 (0 � z < h),

U

{
1 + a

1 − a
γ

sin γ
cos

[
γ

1 − a
(1 − z/H )

]}
(h � z � H ),

(2.5)

ρl(z) =




ρc (0 � z < h),

ρr (z) + (ρb − ρo)
a

sin γ
sin

[
γ

1 − a
(1 − z/H )

]
(h � z � H ),

(2.6)

δl(z) =
h

sin γ
sin

[
γ

1 − a
(1 − z/H )

]
(h � z � H ), (2.7)
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and, since wl = 0, the hydrostatic balance yields

pl(z) = pO − g

∫ z

0

ρl(z
′) dz′ (2.8)

where

γ = (1 − a)β = (1 − a)

√
S

a

1

Û
(2.9)

and pO is the pressure at the stagnation point O.
In the two-fluid flow field an equilibrium (steady state) can be maintained only

for certain values of U . Following Benjamin, we consider the momentum balance
in a fixed rectangular control volume whose lower and upper boundaries are the
zero-stress planes z = 0, H , and the vertical boundaries are in the parallel up- and
down-stream regions. The assumptions of steady-state and vanishing viscous stress
(on the boundaries and in the horizontal flow domains) impose the flow-force balance

∫ H

0

(
ρlu

2
l + pl

)
dz =

∫ H

0

(
ρru

2
r + pr

)
dz. (2.10)

At the stagnation point O , the pressure is pO = ρbU
2/2 (recall that pr (z = 0) = 0).

Using (2.1), (2.8) and (2.6), we obtain manageable expressions for the pressure terms in
(2.10). The evaluation of the integral of the momentum flux terms in (2.10) is simplified
by the Boussinesq assumption (i.e. ρl,r (z)u

2
l,r (z) ≈ ρou

2
l,r (z); ul,r (z) are defined by (2.1)

and (2.5)). After some tedious algebra and more use of the Boussinesq assumption,
we can express the flow-force (2.10) balance as

Û
2

2

1

1 − a
[1 + a − 2a2 + a2(γ 2 + (γ cot γ )2 + γ cot γ )]

= 1 − 1
2
a + S

[
− 1 + a − 1

3
a2 + (1 − a)2

1 − γ cot γ

γ 2

]
. (2.11)

The right-hand side of (2.11) can be regarded as the buoyancy pressure driving, and
the left-hand side as the dynamic reaction. The term multiplied by S is the contribution
of the stratification to the (integrated) pressure difference. The last term in the
brackets on the right-hand side is worth mentioning: it represents the effect of the
displacement of the isopycnals.

Finally, we use (2.9) to eliminate Û from (2.11) and obtain, after some algebra,
the flow-force balance in the form

f (γ ) = 1 − a + a(2 − a)γ cot γ +(aγ cot γ )2 + γ 2 a

1 − a

[
(2 − a)

(
1 − 1

S

)
− 1

3
a2

]
= 0.

(2.12)

The root(s) of this equation, for given a and S, provide the desired solution
Fr(a, S) = Û = (1 − a)(S/a)1/2/γ (see (2.9)). Obviously, only real-valued positive roots
of f (γ ) are of interest in the physical context of the gravity-current problem. The
Boussinesq simplification introduces an O(ε) error in the Fr results. We note that
the stratification enters the relevant equation both explicitly as S and implicitly as
(S/a) via γ . We could not find a rescaling which simplifies these dependencies (see
§ (3.3)). We think this reproduces a physical property of the system rather than a
mathematical coincidence.
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3. Results
3.1. Small S (small γ)

Consider the weak stratification, S → 0, case. We expect that the dimensionless
velocity Û = Fr is of the order of unity. Note, however, that straightforward
substitution of S = γ = 0 into (2.11) and (2.12) yields indeterminate 0/0 terms, and
hence a more subtle calculation is required. Equation (2.9) indicates that γ 2 = O(S).
In this case, the use of (2.11) is convenient. By an expansion in powers of γ we obtain,
to leading order in S, the compact result

Û = Fr(a, S) =

[
(2 − a)(1 − a)

1 + a

(
1 − 2

3
S
)]1/2

= FrB(a)
(
1 − 2

3
S
)1/2

(3.1)

where FrB(a) is the classical formula of Benjamin, see (1.5). It is of course encouraging
to find that the previous well-established result is a limiting case of the present
theory. Moreover, it can be shown that the next term in the expansion will contribute
in (3.1), following 2S/3, a positive quantity of, approximately, S2/(90a). Thus, the
approximation (3.1) is expected to be valid and fairly accurate for a wide range of
S (say, � 0.5), provided that a is not very small, (say, � 0.1). This will be confirmed
below by the numerical solution of f (γ ) = 0. For S < ε, the influence of S on Fr
is within the Boussinesq error bounds. The resulting behaviour (3.1) is simple and
intuitive: the weak stratification causes a mild reduction of Fr, which is effectively
decoupled from the depth-ratio dependency.

The behaviour of a ‘Froude number’ of the current, which is actually a dimensionless
velocity, depends, of course, on the scaling. This may become a confusing issue in the
present stratified case where three densities and two lengths are present. We therefore
recall our framework. It is convenient to consider the densities at the top of the
ambient, ρo, and of the dense fluid, ρc, as given, with ρc > ρo. In most experimental
settings, the top (open surface) is fresh water. The density in the ambient increases
linearly with the depth. The bottom density, ρb, is between ρo and ρc, on a scale
expressed by 0 < S < 1. A weak stratification means that ρb is closer to ρo than to
ρc. The scaling velocity in the present Fr is independent of ρb (or S). Thus, according
to (3.1), for a given configuration, when a larger ρb is produced, the physical velocity
of the current decreases. We think this is indeed simple and intuitive.

3.2. Large γ . Validity-stability and criticality

For non-small S and small a, the analysis is more complicated. It is necessary to find
numerically the solution of (2.12). Now two difficulties appear.

First, an inspection of the equation indicates that, for non-small S, several
simple positive roots may be obtained. We arrange the roots in increasing order,
γi, (i = 1, 2, . . .). Secondly, we note that some roots may be larger than π/2. This
introduces the possibility of negative ul , as follows. Considering the contribution of
the trigonometric term in (2.5), we find that (i) for γ � π/2, all values of ul(z)
are positive and larger than U ; but (ii) for certain values of γ > π/2 the velocity
profile ul(z) above the current may attain negative values. This negative ul situation
invalidates the assumption that all the streamlines originate in the right unperturbed
‘upstream’ domain, and is unacceptable in the physical context of real gravity currents
which propagate into the unperturbed ambient. Moreover, using (2.6), we find that
−dρl(z)/dz has the same sign as ul(z). This means that the local stratification is
unstable when ul is negative. To quantify this tendency to negative velocity and
instability in the downstream domain, we introduce the invalidity (or instability)
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Figure 2. Domains of validity and criticality in the (γ, a)-plane. Points above and to the
right-hand side of the solid line curve (θ = 1) would produce negative and unstable downstream
flows. Points on the left-hand side of the dashed critical velocity line correspond to supercritical
currents; (on the right-hand side, to subcritical).

coefficient

θ =




0 (0 < γ � π/2),

a
1 − a

γ | cot γ | (π/2 < γ < π),

a
1 − a

γ
| sin γ | (π < γ ).

(3.2)

This is a measure of the most severe relative negative contribution of the perturbation
flow to the resulting ul . In other words, for γ > π/2, we obtain min(ul) = U (1−θ) < U ,
and a tendency to unstable density variation, in at least one horizontal level. If θ is
small, there is no danger of spurious behaviour, but for θ > 1, the results are physically
unacceptable. These unacceptable flow fields are also subject to shear instability
(see Baines 1995), whereas, on the other hand, the criterion θ < 1 is also sufficient
for satisfying the Ri > 0.25 stability requirement in the ambient, where Ri is the
Richardson number of the local flow.

In the following analysis, we are concerned only with ‘valid’ solutions, i.e. with
roots of f (γ ) = 0 which satisfy θ < 1. Moreover, we monitor the values of θ in cases
of non-unique valid roots; this is as a possible criterion for discrimination between
the results (see below). The valid results are in the range 0 < γ � max[π, (1 − a)/a].
A more detailed sketch of the validity domain in the (a, γ ) plane is given in figure 2.
For a < 0.18, a periodic validity pattern appears, and the number of these repetitions
increases as a decreases. We found that the number of valid roots of (2.12) roughly
follows this pattern. Decreasing a from 0.5 (see below § (3.4)), the first γ2 (valid)
solution was obtained for a = 0.1784 and S = 0.875; for larger values of a and
0 < S < 1, only γ1 solutions were found.

Typical valid results of Fr, obtained numerically from (2.12), are presented in
figure 3 and 4. Figure 3 illustrates the very good accuracy of the approximation (3.1):
for a given a, Fr starts with Benjamin’s value at very small S, then decreases with
S; the slope is very close to −1/3, independent of a. The deviation from this simple
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Figure 3. Fr as a function of S for a = 0.1, 0.2, 0.3, 0.4, 0.5. The symbols are Benjamin’s
solution for the corresponding a. The dashed and dash-dotted lines are the second and third
roots for a = 0.1.
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Figure 4. Fr as a function of a for various S (S = 0.01 dotted line, S = 0.5 solid line, S =0.8
dashed line, S = 0.98 dash-dotted line).

behaviour appears for larger values of S/a (> 5, say). Here, a second-root branch
may also appear.

The behaviour of the first-root solution seems bizarre (counter-intuitive) when S/a

becomes large (> 5, say): for a fixed a, Fr reaches a minimum, then increases (slightly)
with S. To understand this unexpected behaviour, we return to the flow-force balance
(2.11), expand γ cot γ in powers of γ and truncate the results after the γ 4 term (the
accuracy is within several per cent for γ < 2.5 and qualitatively sufficient for γ < 3 ).
We obtain

Û
2

2

1

1 − a

[
(1 + a) + 2

45
a2γ 4

]
=

(
1 − 1

2
a
)(

1 − 2
3
S
)

+ (1 − a)2
S

45

(
γ 2 + 2

21
γ 4

)
. (3.3)
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The right-hand side is, again, the pressure force term, and the left-hand side the
dynamic reaction. According to (2.9), γ 2 ≈ S/a in the range of interest here. The
right-hand side pressure force displays the tendency to decrease the dimensionless
speed Û of the current when S increases from zero (the first term), but also the
possibility of enhancing Û when γ is not small (the last term). However, a simple
analysis proves that the change of trend occurs at a large value of γ 2 (to be specific, the
right-hand side reaches its minimum at S/a ≈ 7). This can be achieved only for small
values of a. A closer inspection shows that the enhancing component of the pressure
term is a secondary contribution of the displacement of the isopycnals, i.e. the last
term in (2.3). (The main contribution of the displacement is to reduce the coefficient
of −S in the first term of (3.3) from 1 to 2/3.) On the other hand, the effect
of stratification on the left-hand side dynamic force term enters like a2γ 4 and
hence it remains bounded when a decreases. Actually, the relevant term is 0.05S2

approximately, for both small and non-small values of a. This change in the left-hand
side term can be neglected as compared with the effect of the stratification on the right-
hand side term. The behaviour of Û =Fr discussed here is relevant for the first root
only. When γ → π− the results tend to violate the θ � 1 restriction, see (3.2). When
γ > π the trigonometric terms change sign, the force balance admits a second (or
higher) branch (root of f (γ ) = 0). The branches of the additional roots, see figures 3
and 4, reproduce the expected decrease of Fr with increasing S. It is not clear if
the counter-intuitive result is spurious, or may be realized under some complex
initial/boundary conditions (e.g. a strong source). Our ‘intuition’ is mostly a result of
simple lock-release tests, and under these conditions the subcritical second (or higher)
branch solution is more likely to develop and prevail. We shall return to this point in
§ 3.5.

The velocity of the fastest internal gravity wave in the upstream section is (see
Baines 1995),

Uw =
NH

π
=

(Sg′H )1/2

π
. (3.4)

The ratio of Uw to the speed of the current can therefore be expressed as

Uw

U
=

γ

π(1 − a)
=

1

π

√
S

a

1

Fr
. (3.5)

The critical Fr number, for which this ratio is 1, is

Frcr =
1

π

√
S

a
. (3.6)

The steady-state current under consideration is supercritical, i.e. propagates faster
than Uw , if its Fr > Frcr (i.e. γ < π(1 − a), see figure 2). This type of current is more
likely to occur for configurations with small S and non-small a. The calculations show
that valid results in the supercritical domain are obtained for, approximatively

S <

{
0.9 + 0.25(0.5 − a) (0.1 � a � 0.5),

1 (a < 0.1).
(3.7)

However, this apparent dominance of the supercritical regime is based on γ1, the first
valid root of f (γ ). The additional roots, when present, yield, without exception, sub-
critical propagation. We found that, for a < 0.18, subcritical currents are possible for
approximately,

S > 0.03 + 4.58a. (3.8)
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For lock-release problems with small a and non-small S, the subcritical currents
seem more physically acceptable (rather, expected) than the supercritical solution.
The reasons are as follows. Since the flow develops from zero velocity conditions, it
obviously encounters first the subcritical quasi-steady balance; if this is sufficiently
stable, there is apparently no mechanism to accelerate the propagation further. This
may explain why the theoretical dFr/dS > 0 of the supercritical branch is inconsistent
with available experimental observations. Moreover, the dissipation head loss in the
subcritical flow is smaller, as shown in § 3.4.

3.3. The effective g′ and Fr rescaling

In the foregoing analysis, we scaled the velocity with g′ based on the density difference
of the current to the top of the ambient, ρc − ρo. This scaling is convenient for
homogeneous configurations and for presentation of laboratory results. Indeed, in
typical experiments, the top of the ambient is fresh water, and it is straightforward to
refer the other densities to this ρo. However, for enhancing the physical insights, in
particular for non-small S, it makes sense to consider the results in a rescaled form.
The choice of scaling parameters is, of course, non-unique. Moreover, owing to the
complexity of the problem and the presence of oscillating trigonometric terms in the
balances, a single scaling which is satisfactory for the full range of S and a is not
expected. We shall briefly discuss one convenient approach.

We argue that the effective driving force of the current is well correlated to the
difference between the density of the dense fluid, ρc, and the density of the upstream
ambient at the mid-height of the head, ρr (z = h/2). We therefore define the effective
(subscript e) reduced gravity as

g′
e =

ρc − ρr (h/2)

ρo

g =
(
1 − S + 1

2
aS

)
g′, (3.9)

where (2.1), (1.1) and (1.7) were used. We note in passing that ρo was used as the
denominator for simplicity; in the framework of the Boussinesq approximation, a
negligible O(ε) change of g′

e appears if ρb or ρc is used instead. The scaling velocity
is now (g′

eh)1/2.
The effective Froude number is therefore defined as

Fre =
U

(g′
eh)1/2

=
(
1 − S + 1

2
aS

)−1/2
Fr, (3.10)

see (1.4). The switch from the previous Fr results to the effective Froude is
straightforward. Benjamin’s scaling is fully recovered for S → 0.

The rescaled Fre as a function of S for various values of a is displayed in figure 5
(to be compared with the counterpart figure 3 for the originally defined Fr). The
conclusions are as follows.

Consider the weak stratification case, S � 0.5. The leading effect is contributed,
again, by Benjamin’s FrB . Indeed, the combination of (3.1) and (3.10) yields, to leading
order in S

Fre = FrB(a)
[
1 + S

(
1
3

− 1
2
a
)]1/2

. (3.11)

For 0.1 � a � 0.5, the effective Froude number varies very little with S. This is
because now the reference velocity takes into account the density stratification effect.
In this case, our intuitive expectation of g′

e is confirmed. However, figure 5 shows
that the counter-intuitive increase of Fr (for the first root) with S when S/a is not
small has not been alleviated by this rescaling. On the contrary, this effect becomes
more pronounced in the behaviour of the rescaled Fre. In other words, in this case
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Figure 5. Fre as a function of S for a = 0.1, 0.2, 0.3, 0.4, 0.5. The symbols are Benjamin’s
solution for the corresponding a. The dashed and dash-dotted lines are the second and third
roots for a = 0.1.

our intuitive understanding of g′
e is not sufficient for the interpretation of the flow;

the real speed is significantly larger than expected. This strengthens our conclusion
that this is a subtle physical effect, not a mathematical artefact. We conclude that
the rescaling is helpful in the case of weak stratification, but may be misleading
(significantly underestimate) the first root behaviour when S/a > 5.

Consider the strong stratification S → 1 flow for small a, when the second (and
third, etc.) root appears (the dashes and dashed-dotted lines in figure 5). Here, the
advantage of the rescaling is observed: Fre is of the order of 1 (while the original
Fr tends to small values). This turns out to fulfil our expectations. Indeed, the case
S → 1, i.e. ρb → ρc, corresponds to an intrusion at the neutral-buoyancy level. In
this case, we can write g′ = N2H , where, again, N is the buoyancy frequency. Our
estimate of the velocity of propagation, based on physical intuition and supported
by experimental and numerical evidence (Wu 1969; Amen & Maxworthy 1980;
Ungarish 2005) is as follows. Since the density difference at z = 0 is zero, in this
case the buoyancy driving effect is clearly provided by the gradient, g′/H , multiplied
by the (half) thickness of the current. This produces the effective reduced gravity
g′

e = N2h/2 = ag′/2 (exactly as given by (3.9)). Consequently, the relevant expected

speed of propagation is (g′
eh)1/2 = (1/

√
2)Nh. The fact that Fre is of the order 1

indicates that there are stable solutions of the generalized Benjamin problem which
agree well with our intuitive understanding of the flow field in this limit.

3.4. Energy dissipation

Consider a streamline at height z in the left-hand side parallel domain of ambient
fluid. This streamline carries fluid of density ρl(z) and is elevated δl(z) from the initial
right-hand side position. In ideal conditions, the pressure on this streamline satisfies
Bernoulli’s equation

pi
l (z) + 1

2
ρl(z)u

2
l (z) + ρl(z)δl(z)g = pr (z − δl(z)) + 1

2
ρl(z)U

2 (h � z � H ), (3.12)
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where the superscript i denotes ideal energy-conserving flow. For the non-ideal flow of
the gravity current, following Benjamin, we introduce the head loss on the streamline

∆(z) = [pi
l (z) − pl(z)]/(ρog

′) (h � z � H ). (3.13)

In Benjamin’s analysis the head loss is independent of z. For the present more complex
configuration, it is convenient to define the average head loss

∆ =
1

H − h

∫ H

h

∆(z) dz. (3.14)

Substituting (2.5)–(2.8) and (3.12) into (3.13) and using the fact that the density is
preserved on the streamline we obtain, after some algebra,

∆

h
= 1 − S

[
1 − 1

2
a + 1

2

(1 − a)2

a

1

γ 2
+ 1

2
a

1

sin2 γ
+ (1 − a)

cot γ

γ

]
. (3.15)

The results are meaningful for values of γ which are valid solutions of f (γ ) = 0.
For obtaining the behaviour for small S, we use an expansion of (3.15) in powers

of γ combined with (2.9) and (3.1). This yields, to leading order in S, the compact
result

∆ = h
a(1 − 2a)

2(1 − a2)

(
1 − 2

3
S
)

= ∆B

(
1 − 2

3
S
)
, (3.16)

where ∆B is the classical result, (1.6), for a non-stratified ambient. The fact
that Benjamin’s dissipation results are recovered for small values of S is, again,
encouraging. In particular, it is evident that ∆ vanishes, to leading order, only for
a =0.5, and becomes negative for larger a. This confirms, and also extends, the
well-known outcome of Benjamin’s analysis that in a homogeneous ambient only the
half-depth current is energy conserving, and that for a > 0.5, the dissipation attains
non-physical values. The last equation also indicates that the stratification reduces
the dissipation.

In general, the numerical calculation of the dissipation via (3.15) in the domain
of interest shows that for valid solutions of (2.12): (i) for a given a, ∆/h decreases
as S increases. This seems consistent with the observations of Maxworthy et al.
(2002) that the interface of the current is smoother in the stratified ambient than in
the homogeneous counterpart; (ii) For a > 0.5, only non-physical negative ∆ were
obtained. Let amax(S) be the largest fractional depth for which physical non-negative
dissipation occurs at a given S. Decreasing a from 1, we find that the largest amax is 0.5
for small S, and becomes smaller than 0.5 as S increases. This is a generalization to
S > 0 of Benjamin observation that in the homogeneous ambient the non-dissipative
result is valid only for a = 0.5, and that a steady flow is impossible in practice if the
current occupies more than a certain portion of the channel (0.5 in his case).

Typical head-loss results are displayed in figure 6 and 7. In the tested cases,
0.05 � a � 0.5, 0 < S < 1, the value of ∆/h is quite small, typically 2 − 5 %. The
maximum, attained for S ≈ 0 and a = 0.25, is 0.066. (Benjamin scaled ∆ with H

which, we think, is less informative. In any case, for the variable ∆/H = a(∆/h) and
S → 0, we obtain the same maximum as Benjamin: 0.021 at a =0.35.) The second
and third root solutions display very small dissipation, ∆/h < 0.1 %; the difference
from an energy-conserving flow in this case is negligible.

3.5. Comparisons

No direct experimental data for Fr(a, S) is available, to our knowledge. We hope
that the present analysis, which provides the theoretical background and values for
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Figure 6. Head loss as a function of S for various a. The dashed and dash-dotted lines
correspond to the second and third roots for a = 0.1.
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comparisons, will motivate the appropriate experimental investigation. At present, the
only closely related available experimental–numerical tests for a stratified ambient
are by Maxworthy et al. (2002), to be discussed below. Even for the homogeneous
ambient, the direct experimental verification of Benjamin’s theory is a complex task.
First, it is not easy to produce and control a steady-state gravity current which moves
like a slug and whose stagnation point is at the bottom, see Simpson & Britter (1979).
Secondly, it is not clear how to define the pertinent height h of a real current, because a
thick mixed-fluid interface usually develops in practical circumstances. Attempts have
been made (including by Benjamin) to infer the validity of the theoretical Fr from the
measured velocity of propagation of the head in time-dependent currents, typically
produced by release of a fixed volume of fluid from behind a lock. These efforts
have been augmented by ‘numerical experiments’ (Klemp, Rotunno & Skamarock
1994, Härtel, Meiburg & Necker 2000). In a simple rectangular geometry the initial
(‘slumping’) motion is with constant velocity, in accord with Benjamin’s theory, but
the shape of the interface changes with time (the dam-break problem) and hence the
violation of the steady-state assumption cannot be fully dismissed. Comparisons of
the theoretical predictions of the velocity with the measured values involve the Fr
formula, but also a SW model, and hence the conclusions cannot be sharp. In general,
the comparisons with experiments in homogeneous fluid show that Benjamin’s Froude
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formula gives the correct dependency on a, but overpredicts (by about 30 %) the value.
The discrepancy is attributed mainly to viscous effects. Typical results are presented
in Simpson & Britter (1979, figure 11), Hupper & Simpson (1980, figure 1), Klemp
et al. (1994, figure 6a) and Härtel et al. (2000, figure 4.)

Shin, Dalziel & Linden (2004) challenged the validity of Benjamin’s balances in
the context of the lock-exchange flow of homogeneous fluids. By imposing energy
conservation on the simplified time-dependent flow about the lock, Shin et al. (2004)
derived a Fr(a) formula which produces better agreement of the SW results with
experiments than FrB(a). In this case, the thickness of the current is half the initial
height in the lock, in contrast with Benjamin’s result that non-dissipative flows occur
at a =0.5 only. Shin et al. (2004) attribute this difference to energy transport by waves
on the interface, which is omitted in Benjamin’s balances. These results are expected
to give rise to a controversy. In any case, the difficulty of verifying Benjamin’s result
by the lock-release experiments is evident even for the homogeneous ambient.

For the stratified-ambient case, the only relevant experimental study is also of
the lock-release type. Maxworthy et al. (2002, hereinafter referred to as MLSM),
investigated bottom gravity currents released from rectangular locks into linearly
stratified ambients. The parameters H , S, g′, and the lock geometry are known. The
velocity of propagation, U , was accurately documented, but the corresponding values
of h were not recorded. Consequently, a reliable reduction of the measured data to
the form U/(g′h)1/2 and a = h/H , which allows direct comparison with the theoretical
Fr(a, S), is not feasible. Moreover, the lock-release process generates internal gravity
waves which may be incompatible with the assumptions of the theory. The interaction
of the current with these waves in the subcritical regime tends to suppress the
constant-velocity phase of propagation, as pointed out by Maxworthy et al. (2002).
Nevertheless, a comparison was attempted to confirm the trends predicted by the
theory, as follows.

To be specific, MLSM considered the release of a rectangular volume of dense
fluid of height h0 into a linearly stratified ambient of height H . The height ratios
a0 = h0/H = 1/3, 1/2, 2/3 and 1, and various stratifications in the range 0.3 < S < 1,
were investigated. The experiments used salt water, clearly within the Boussinesq
regime, and the typical Reynolds number was 104. In all cases, a phase of propagation
with constant velocity was observed. This quasi steady-state ‘slumping’ phase
resembles the steady-state assumption of the theoretical analysis. The corresponding
velocity, U , obtained in laboratory experiments, was also confirmed by numerical
simulations. The study expressed the velocity in the reduced form

ϕ =
U

NH
. (3.17)

(This dimensionless quantity is referred to as the Froude number Fr in MLSM, but
we use a different notation to avoid confusion with our Fr.) An accurate summary of
the results was represented by the fitted curves (see figure 7 of MLSM)

ϕ(R, a0) = A(a0) + C(a0) log R, (3.18)

where R = 1/S, a0 = h0/H . The coefficients for the values a0 = {1, 3/2, 1/2, 1/3}
are given by A= {0.266, 0.229, 0.205, 0.147}, and C = {0.912, 0.916, 0.846, 0.774}. As
noted by MLSM, the current is supercritical when ϕ > 1/π, see (3.4).

The height of the nose of the current during the slumping stage is h = κh0, where
κ is expected to be about 0.3 − 0.5. The velocity of propagation, in terms of our
analysis, is U = Fr × (g′κh0)

1/2, with Fr calculated for a = κa0 and the appropriate S.
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Substituting into (3.17), we can express the theoretical dependency as

ϕ = κ1/2Fr(κa0, S)
(g′h0)

1/2

NH
= κ1/2Fr(κa0, S)

(
h0

SH

)1/2

. (3.19)

Using the present approximation (3.1) for Fr(a, S) (practically valid for S < 1 in the
present range of a) and rearranging, we obtain

ϕ =
{
κ1/2FrB(κa0)

}[(
h0

2H

)(
2R − 4

3

)]1/2

, (3.20)

where, again, R = 1/S, represents the stratification. The form of this result is similar
with the experimental-heuristic inference of MLSM, equation (4), for large R (small
S). The small formal difference is that the formula of MLSM contains 1 instead of
4/3 in the last term. MLSM denoted the term in the curly brackets by k, and pointed
out that it is expected to depend on a0. The good agreement between these formulae
provides support to the present theory.

Unfortunately, the values of κ for the data set (3.18) are not available, and this
prevents a sharp comparison of the reported real ϕ with the predictions of the present
theory. To proceed, we introduce the plausible assumption κ = 0.4. An inspection of
the flow-field figures presented in MLSM, and order-of-magnitude considerations,
indicate that this is a fairly representative value (although the deviations about it
may be large, in the range of 50 %). The comparison of the experimental–numerical
data with the theoretical estimates (3.20) is displayed in figure 8; note that R is
on a logarithmic axis, like in the corresponding figure 7 of MLSM. The real and
theoretical results are consistent. In both experiment and theory, ϕ increases with R

(almost linearly with respect to the log R axis), and with the depth ratio a0 = h0/H .
The tendency for the current to be supercritical for large R (small S) and subcritical
for small R (non-small S) is also well reproduced. As expected, for a given geometry
and stratification, the theoretical inviscid speed of propagation is always larger
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(by typically 30 %) than the measured values. This feature is well known for the
unstratified cases, and it is seen here that it carries over to the stratified configuration.

A more accurate comparison between the theory and the real data requires
knowledge of κ , i.e. the real height of the gravity current during the slumping
phase. This topic is left for future work. When this information becomes available,
the comparisons with the present theory can be performed easily along the lines
shown here.

Another verification which is expected to throw light on the theory is the comparison
of the present Fr results to previously suggested formulae for which some support
has been gained. Ungarish & Huppert (2002) argued that

Fr(a, S) = Fr(a, S = 0)
(
1 − S + 1

2
aS

)1/2
, (3.21)

and, in the present context, Fr(a, S = 0) = FrB(a). Kao (1976) developed an ad
hoc approximation for a deep intrusion with S = 1; in the present notation it
reads Fr = a1/2. This result is a particular case of (3.21) (recall that FrB ≈

√
2

for small a) (Manins (1976) suggested, for S = 1, a global volume-average Froude.
This is incompatible with the present analysis). These suggestions were made in
the framework of time-dependent propagation SW models for lock-release problems,
and turn out to be related to the effective driving discussed in § 3.3. Kao (1976)
performed comparisons with experi ments of Wu (1969). Ungarish & Huppert (2002,
2004) made detailed compari sons of the SW results with experimental and Navier–
Stokes numerical data of Maxworthy et al. (2002), and with additional numerical
simulations. Ungarish (2005) developed the corresponding SW theory for a symmetric
intrusion and performed detailed comparisons with experiments of Wu (1969), Amen
& Maxworthy (1980), Faust & Plate (1984) and Rooij (1999). Judging from the overall
good agreement of the velocity of propagation, (3.21) captures fairly well the influence
of a and S on the velocity. We therefore think that the comparison of (3.21) with the
present more rigorous results may throw some light on the problem.

We denote by G the ratio between the present Fr to the suggested Ungarish–
Huppert (HU) formula (3.21). This ratio depends on S, a, and on the number of the
root (when the solution of (2.12) is not unique). The typical behaviour is shown in
figure 9. For small S/a, the agreement is very good. In particular, for S � 0.5 and
a � 0.1 the discrepancy is at most 16 %. On the other hand, for S = 0.8 the first
root solution exceeds the UH prediction by about 25 % at a = 0.3 and by 65 % at
a =0.10. However, the second and third roots display a better agreement, in the range
of ± 20 % for 0.02 � a � 0.12.

Additional information on the case S = 0.98 is presented in figure 10. (We use this
value as representative of the strongest stratification; for S closer to 1 some θ > 1,
difficulties appear in some circumstances.) For S =0.98 and small a, many valid roots
are obtained: e.g. 6 and 13 for a = 0.05 and 0.02, respectively. The results of the first
roots exceed very significantly the HU formula, but for larger i (and γi) a fairly good
agreement appears. The value of the invalidity-instability coefficient θ first decreases
with the number of the root, and then increases. In the region of minimum θ (which
we think is the most stable) the values of G are about 1.3. We therefore suggest the
following criterion: when several solutions Fr are possible for given (a, S), the one
with the smallest θ is expected to appear in practical cases.

From the point of view of application to real gravity currents, these findings are
encouraging. The use of the UH formula in various circumstances produced, with
no exception, simple predictions for the velocity of propagation which agree well
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with available experimental and numerical results. The fact that the present theory
endorses this formula for a very significant range of S and a provides support to
the shallow-water modelling used by Ungarish & Huppert (2002). Conversely, this
consistency indicates that the present analysis is not just an academic exercise, but
rather captures the physical behaviour of real systems. However, we keep in mind that
the validity-stability criterion used in the present theory lacks a rigorous foundation,
and therefore more work is required to further verify the apparent agreements.

The Fr formulae derivations of Ungarish & Huppert (2002) and Kao (1976) ignore
the validity-stability, dissipation and non-uniqueness features of the gravity current
flow–field. These difficulties become important, theoretically, for S > 0.5. However,
in practical release from behind a lock, the velocity develops from zero and hence
it is plausible that the flow adjusts to the smallest (or close to it) possible velocity
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of propagation. This corresponds to the subcritical branch and the larger γi roots.
Therefore, no serious deviations from the over-simplified behaviour predicted by
(3.21) were noted in lock-release experiments. On the other hand, we must keep in
mind that the available experimental data cover a narrow domain of a, and are prone
to wave contamination owing to the initial gate-removal motion. Indeed, Maxworthy
et al. (2002) inferred from their experimental observations that for small a the initial
flow in a lock-release experiment will be subcritical and will rapidly evolve into a
time-dependent wavy state (see also Manasseh, Ching & Fernando 1998), with no
measurable quasi-steady velocity of propagation. Moreover, the available experiments
were performed in configurations with open surfaces. Another important point is
the control of the possible influence of upstream waves on the validity of Long’s
unperturbed far-field assumption. It is therefore clear that the verification of the
intriguing features of validity-stability, dissipation and non-uniqueness, pointed out by
the present analysis in particular for small values of a, require special experiments. It
is plausible that the initial/boundary conditions play an important role in establishing
the multiple-solution regimes indicated by the present theory.

4. Concluding remarks
The classical Fr and dissipation results developed for a steady propagation of a

gravity current by Benjamin (1968) have been generalized to a linearly stratified
ambient. Like Benjamin’s results, the evident significance of this progress is more in
the fundamental-theoretical domain than in the practical consequences, at least at
the present stage of knowledge. The theory provides support and guidelines for the
investigation of real gravity currents, but cannot be used directly as a prediction tool.
The steady-state flow assumption, irrespective of the initial conditions, restricts the
applicability of the theoretical Fr and dissipation formulae to the head region of a
practical current, and even this only as a first approximation.

The study proves three main points. (i) For weak stratifications and not very deep
ambients (say, S < 0.5 and a > 0.1), the stratification causes a simple decrease of
the speed of propagation and dissipation as compared with the non-stratified results
for the same fractional depth, a. In this case, the current is supercritical and unique
(for given a and S). (ii) For larger S and/or small a, the situation is complicated by
the existence of several apparently acceptable results for a given combination of S

and a. The current may be subcritical. A plausible criterion for the selection of the
physically expected results was suggested (the theoretical or physical foundation of
this criterion is still lacking). (iii) No steady-state currents are possible for a > amax(S),
where amax(S) is 0.5 in the non-stratified limit and decreases with S. (To be specific,
we have in mind a system in which the density of the current, ρc, and at the top of
the ambient ρo (< ρc) , are fixed. The density in the ambient increases linearly to a
prescribed value at the bottom, ρb (� ρc). The strength of stratification, S, specifies,
on a scale from 0 to 1, the position of ρb between ρo to ρc. The geometry is expressed
by the height ratio of the current to ambient, a. The criticality is with respect to the
fastest internal gravity wave mode in the unperturbed ambient.)

The dissipation of the system decreases with S. In the higher-roots results, the head
loss (scaled with h) is very small. In these cases, the difference from energy conserving
solutions is expected to be negligible. The development of an energy conserving
counterpart theory is left for future work.

The assumptions necessary for obtaining the solution of this formidable problem,
and in particular the use of Long’s model, are compatible with these underlying
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Benjamin’s flow field. This is reflected by the full agreement between the results when
S → 0. The hydrostatic simplification in Long’s model means that the typical vertical
displacement of the streamline, δ, occurs over a relatively much larger horizontal
distance. The use of the inviscid global flow-force balance may be justified when
Re =Uh/ν � 1. These restrictions are mild, and consistent with the inviscid shallow-
water modelling, which is the widely accepted tool in the investigation of gravity
currents. The Boussinesq assumption can, formally, be relaxed – but, judging from
the complexity of the present analysis, there is little hope of obtaining meaningful
non-Boussinesq analytical results. This topic is left for future work. The assumption of
an unperturbed upstream domain is, perhaps, the weakest point of Long’s model when
the current is subcritical. A guideline is provided by experiments with flows over a rigid
topography in geometries which resemble a gravity current (Baines 1995, § 5.6). For
conditions relevant to the present supercritical flows, no disturbances were observed
on the upstream side. On the other hand, for the subcritical counterpart, perturbations
corresponding to columnar modes were sometimes observed on the upstream
side. These persistent upstream perturbations are an indication that the simple
upstream boundary conditions are sometimes incompatible with the existence of
an obstacle in the fluid. Nevertheless, Long’s model (and the present solution) are
expected to be a good approximation if the amplitude of these perturbations is small.
Since a gravity current is a flexible obstacle and the validity-stability conditions are
imposed by our analysis, we can speculate that upstream perturbations (if any) will
be milder in our case than in the experiments discussed by Baines (1995). Indeed,
there are some experimental indications that these upstream perturbations are very
weak in flows of intrusions (Rooij 1999). The practical effect of this difficulty, and the
related issue of multiple solutions, require further, mostly experimental, investigation.
We think that the present theory provides both the motivation and the required
guidelines for these experiments.
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